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QUARK-MASS EFFECTS IN SCHEME-INVARIANT
PERTURBATION THEORY

D.I.Kazakov, D.V.Shirkov

We report the results of massive generalization
of the scheme-invariant perturbation theory that
represents physical observables in terms of re-
normalization-scheme invariant quantities. For
the functions depending on one invariant argu-
ment expressions which explicitly incorporate
threshold effects are given. Analogous generali-
zations of equations relating scale parameters
for different processes are obtained.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Maccosbpie 3dbdhexTh B CXeMHO~HHBapHaHTHOH
TEOPHH BO3MYmEeHHH
O.U.KasakoB, H.B.llupkxos
IlpencTaBneHs pes3ylibTaThl MAacCHBHOI'O o606meHUs
CXEeMHO—-HHBAPHAHTHOH TEOPHH BO3MYIeHHH, KoTopas
poipaxaeT dusHueckye HabmogaeMble B TepPMHHAX HH™
BapHAHTOB CXeMbl NMepeHOPMHPOBKH. s byHKLIMWHA,
3aBHCSAMHX OT OOHOT'O MHBAPHAHTHOTO apryMmeHTa,
HoJIy4YeHs BHpaKeHHA, ABHbIM 0Gpa30M BKiouaomie NOpo~
rosele 3ddexTh. IIpHBeneHb aHaJIOI'HUHbIE o606meHHA
ypaBHeHHIt, CBASHBAONMUX NKAJL PasjHYHbIX MPOUECCOB.
Pa6oTa BumonHeHa B JlabopaTopHH TeopeTHYeCKOH
dusuxku OUAU.

1. Introduction

The results of renormalized perturbation theory as they
are as well as improved by the renormalization group method
(RGM) L2/ contain explicit dependence on the renormali-
zation scheme employed. The problem of scheme dependence
(SD) becomes important in QCD due to a rather large value
of the effective coupling constant in the physical region
of interest.

Recently this SD problem was attacked from a new stand-
point/&4/ which is equivalent to the introduction of
a number of coupling constants each of which is attached
to a single physical process (or situation). Each quantum-
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field function or matrix element can then be expressed
in a scheme-independent (SI) way in terms of its "own"
coupling constant or scale parameter. The unity of the
theory is provided by the set of SI relation between scale
parameters of different processes.

All this formalism was developed/£5/ in the massless
case for single-argument objects within the RG technique.
We shall call it the scheme-invariant perturbation theory
(SIPT). The present paper contains the results of massive
generalization of this SIPT.

The account of mass dependences can be made on the ba-
sis of RGM technique in the massive case developed by one
of the authors several years ago/ 6/, The foundations of
such massive RGM were formulated in 50-ies 1,2/ por
example, the one-loop mass-dependent contributions to the
invariant (effective) coupling constant, in a full analo-
gy with massless case, are summed into a geometric prog-
ression. Technlcally this is achieved by solv1ng the dif-
ferential RG equations (first obtained in/1/) containing
a fixed renormalized pole mass. The above-mentioned geo-
metric progression is an exact solution’/?/ of this diffe-
rential equation.

A two-loop solution of the mas§-9ependent equation for
the coupling has been obtained in and has the form

) a '
@ e , n

A
1- aAl + aA—lln(l—aAl)

where Ayp = AeGQ m N )13 a genulne l-loog contribution
to the PT expression: “P =a+.a A +a( 1+ A +0(aM).

Note that this result, on the one hand, contains only
(mass-dependent) coefficients Ay of perturbatlon series
and at the same time in the pure logarithmic regions (when

= BnQ /y ) c01nc1des with the well-known ultravio-

1et 2~loop expre831on for a (see, e.g., Eq.(34) in/? or
Eq. (43.12) in/8/).

Analogous expressions were obtained/6/ for other single-
argument functions possessing anomalous dimensions, e.g.,
for the moments of structure functions, of effective mas—

ses. In the one-loop approximation ( = 14—aSIGQ%1n% u2)+
+ O(a ))
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Eqs. (1) and (2) are a generalization of thezcogresponding
massless eqs. Only for m - 0, when S 5 y;InQ /p~, the ex-—
ponent n becomes Qz—independent.

Eqs. (1) and (2) were obtained in the MOM-scheme. They
can be reformulated in any other scheme, but will still
be SD. Our aim is to avo}% E%&s SD. With this purpose we
use the approach of ref.’™ ™ Below we give a short re-
view of this approach.

2. Scheme-Invariant Perturbation Theory

Consider a single -argument function R possessing zero

anomalous dimension with the perturbative expansion
2 {2 2, 2
= i !

RpQ,...,2)=a,i1 + airl(Q L) +a @5, ) 3)
where the expansion parameter a, = ai/n as well as coeffi--
cients r; are SD, i being the index of the scheme. Diffe-
rentiating eq.(3) with respect to 1nQ2 and on the other
hand, solving eq.(3) for a;, i.e., expressinga; in terms
of a series over R, we come to the differential equation
for R:

¢
max dR

R-FR) - 3 R''E, ®R=0" ) %)
£>1 aqQ?

which is explicitly SI. That means that all f, = SI. Note
that in the massless case all fy are constant.
Solution of eq.(4) can be given in the form

Q 1 B By
Biln = = = - =—In(1l + =—) + I(R), (5)
! Af‘ R B BgR
11_-2¢ 102-%8¢
where ﬁ3l= -—Z§- and Bz = 163 are one- and two-loop

B-function coefficients respectively, and I(R) = 0 in the
two—-loop approximation. Here AR is an integration cons-
tant which is directly connected with a given quantity
i.e., with a given physical process. The relation betwéen
Age of any renormalization scheme and Ag is:
Ap 2

R SC
/31111(—1\———) =1 . (6)

SC .

At the same time the scales of different processes, say A
and B are connected by the SI relation
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ﬁlm(_j\;) =rlA-rlB a

valid in any order of PT.

To illustrate the application of SIPT, consider two
examples of a perturbative calculation in QCD:

1) Y—?s;ay. The physical observable here is the ratio
of widths ™:

_4a T(Y > ggg) _ v _
Ry= 5= T s - a(My) [1 + (7.85 - 0.611)a(M) ],

2) J/y hyperfine splitting/g/

2
_a _AE(Y)  _ am )1+ 6.66 - 0.180)a(@m ) 1,
20 (Y » ptp)) © ©

where f is the flavour number. Experimental values are
equal/lo/to (4a/57) x 38.7 and 0.21, respectively, with
uncertainties which we put equal to +10% on methodical
grounds. -
We use the following theoretical approaches:
(a) The second (next-to-leading) order RG perturbati-
on theory Rpg=3a(l + ar;), where 8 is defined as
a solution of the Eq.

2 B
1 1 2

Biln —-§M = pln(1l + —=-); p= .

A ap A

(b) The scheme-invariant perturbation theory in 2-
loop order combining Eqs.(5) and (6) yields R as
a solution of

)]

a

M 1 1
ﬁlln——-—l' =E—Pln(1+_pi). (9)

With the help of Eqs.(8) and (9) we obtain numerical
values of Ayg presented in Fig.l, where error bars cor-
respond to 107 data uncertainties.

We have also used for these two examples:

(c) The Stevenson optimization procedure/l‘ATo a given

order of PT it corresponds to the introduction
of one additional parameter ¢ in the RG solution

Q® qQ?
R , a) = R(&, , a))
R(,(p a) (¢ a(z.;?z a
in such a manner that r,(¢) = r;(1) + B Iné.
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The Stevenson'Procedure of Minimal Sensitivity" (PMS)
determines the ¢= ¢, values from the condition A'(£p = 0.
The "physical' value is then equal to A(&p).

In Fig.2 the combination of results obtained by (a),
(b) and (c) procedures are given (for f = 4). Curves re-
present A(Y dependences. Marks "2nd PT" correspond to
(a) procedure, "SI" - to (b) and "PMS" to (c).

It follows from this picture that SIPT gives results
very close to the Stevenson PMS recipe but in contrast
to it provides a simple analytical algorithm.
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Note also that according to Fig.l final results depend
on, the flavour number f. So, e.g., the mean values of v
I%ég = 230 MeV and 200 MeV for f = 3 and f = 4 respecti-
vely. Thus, it is evident that at the moment the theore-
tical "flavour number uncertainty" is of the same order
as the experimental one.

Our next step is to consider this problem in the frame-
work of SIPT.

-

3. The Account of Mass Dependence

First of all we have to fix the way of mass renormali-
zation. We choose the pole mass most suitable for our prog-
ramme. In other words we fix the subtraction procedure so
that the fermlon self-energy operator is subJect to the
condition X (p = m)= 0. It turns out that this is the only
subtraction we really need in the course of calculations.

The result of the usual quantum field perturbation
theory for the R-function now has the structure

Rpp(@%, ..) = a, - 2UL @%, n?) «
+alUh? - vy@® mH1 + 0a)).

Note that out notation (according 1:0/l /) includes the
case of "no-charge renormalization", where a = 3BARE and
BARE

Uy contains the singular dependence of regularization
parameter.

Differentiating with respect to an and reexpressing
a, as a function of R and Ui we obtain quite similarly
to the massless case eq.(4) with SI coefficients fp de-
pending on QZ/m?. After integrating this Eq. in 1-loop
approximation (! =1) we obtain

1
rRD @, - —L (10)
ul(Q ,.--)
where u) differs from any of Ui by a constant u; = U; + 0;
so that u; 1is an SI quantity depending on one free para-
meter, which can be chosen as a scale Ay or "R-process
coupling constant'. In the typical case

i 2 2 2 i
U@ ,...)=ﬁg(3)m%-hzxg(%5)+vg, an

where I,(x) are heavy-quark contributions with properties
Ip© =0, Ip® ->cglnx +dp, as x > =, and Vj is a con-
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stant (possibly singular) depending on the renormali-
zation scheme.
At the same time u; instead of SD constant Vl contains

SI constant and can be represented in the form

2 2
nel o -gend s n&n. - a2)

A h m

R3 h
Here ApRs plays the role of "a scale parameter of R-pro-
cess in the 3-flavour region'". It is suitable for the dis-
cussion of confinement phy31cs. On the other hand, one
can choose as well

@ 0D - FOWS 31,8,
u , m = -
1 1 A2 1 —f
R6 h ‘
where Il(x) I, - ——lnx -d; - 0  as X » =.The latter

choice is more convenlent for extrapolation of it into
a very high energy region, say, into the domain of GUT.
The simple and convenient choice of 1ntegrat10n constant

is prov1ded by the relation ul(Q m2) =0 for Q2 A2
2 2 2
1@, m) - Bl‘(3)1n9_._2 @) J A, (13)
A2 m2 LA :

h
The mass-dependent result (10) is a generalization
of the massless one-loop formula. In the 2-loop case the
corresponding expression can also be obtained. We get
instead of (10):

u,@ 2) -1
R? @% o’ - (u (@, m2)+~—-—T—m—lnu @% mdl ., (8
' u @2 md

where u2 corresponds to a pure 2-loop contribution U2
in the same way as u, to U, The relation between parame-
ters for different processes has the form analogous to

the massless case:
: 2 2

A2 Ag Ay
By @) In(5=) = -E {IIB([—DE—)- IIA(F) b+
, - my ,
-(15)

‘whlle the correspondlng relation between SI parameter A
and SD parameter A‘ for a given process R looks 11ke.
‘Ai 2 A 7 A
ﬁl (3)1H(T) ==2 Il —-2-) + Vl' (16)
R h mh
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Eqs. (15), (16) correspond to the choice of u; as in
eq. (13). :
For the functions with anomalous dimensions

2 2 2 2 2,i,~2 2
pr@m L) =142 @ 0D +as;@% w') v

in the 1-loop case we obtain the resulting expression

n ¢ S
r'Y @2 ) - I‘o[ul;(Qz, m?, AZ)] (Q?), n=—p. (17)
u

1

where s; is the SI function corresponding to the I-loop

contribution SE and

I -1 (83)°

1) =Rp=a, + al{ 2
)

is the dimensionless amplitude of R-type (an analog of
the effective coupling) specific to the considered T -
amplitude. (All this construction is analogous to the
massless case described in detail in paper /127y,

Here the only SD quantity is the constant factor I
It is possible to write down the corresponding 2-loop ex-
pression parallel to the 2-loop generalization of Eq.(l1).
(See, e.g., Eq.(20) in ref./6/),

(u - S;}

1

4, Conclusion

Our results consist of the set of Eqs.(14)-(17).They
represent a massive generalization of the SIPT-formalism
and contain threshold dependence via explicit functions
Ip, Sp which can be calculated in perturbation theory.
These final expressions,quite analogous to massive SD re-
sults of paper/6<do not contain famous renormgroup B and y
functions, but just perturbative coefficients Up and Syg.

The equations obtﬂgned can be used in QCD for the SI
description of the Q° behaviour in the regions close to
heavy quark creation threshold. They provide a conti-
nuous analytic interpolation between massless (logarith-
mic) expressions with different values of the flavour
number.

It is interesting to note that the attractive idea of
getting rid of SD from the renormalized quantum field
theory can be considered without appeal to the renorm-
group. This idea applied to usual perturbation expansions
can be realized for elements of § -matrix and higher
vertices which do not allow the renormgroup treatment.
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It is rather evident that every such function I' can be
expressed in the SI way in terms of its own value I'y- ta-
ken at some fixed values of kinematical arguments. This
can be done even out of the perturbation framework. How-
ever, the equation relating ''coupling constants of diffe-
rent processes' seems to be simple only in perturbation
theory.

References

[ B S L)
.

10.

11.
12.

. Bogolubov N.N., Shirkov D.V. Doklady AN SSSR, 1955,

vol.103, p.203.

Bogolubov N,N., Shirkov D.V. Nuovo Cim., 1956,vol.3,
p.845. : :

Krasnikov N.V. CERN Preprint, TH-2119, Geneva, 1980.
Grunberg G. Phys.Lett., 1980, vol.95B, p.70.

Dhar A, Phys.Lett., 1983, vol.128B, p.407.

Shirkov D.V. Teor.Mat.Fiz., 1981, vol.49, p.29};
also JINR, E2-81-274, Dubna, 1981 (in English).
Blank V.Z., Shirkov D.V.Nucl.Phys.,1956,vo0l.2,p.356.
Bogolubov N.N., Shirkov D.V. Introduction to the
Theory of Quantized Fields. Inters.Pub., N.Y., 1959,
Ch.8.

Mackenzie P.B., Lepage G.P.Phys.Rev.Lett.,1981,v0l.47,
p.1244; Buchmuller W., Ng Y.J., Tye S.-H.H. Phys.
Rev., 1981, vol.D24, p.3003. .

Berkelman K. In: Proc. XX Int.Conf.on High Energy
Phys., Madison, 1980; Durand L., Pondrom L.G., eds.
AIP, N.Y., 1981, p.1499. ,

Stevenson P.M. Phys.Rev., 1981, vol.D23, p.2916.
Dhar A., Gupta V. A New Perturbative Approach to
Renormalizable Theories. Tata Inst. preprint
TIFR/TH/83-18, 1983.

Received on October 11, 1984,
25





